Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Greater adoption of renewable energy technologies by households is a key component of decarbonization and energy transition goals. Although existing literature has examined how sociodemographic characteristics, “green” preferences, and peer effects impact adoption of new energy technology, the role of behavioral preferences has not been adequately studied. In this paper, we examine the effect of two types of behavioral preferences, namely the degree of risk tolerance (risk preference) and attitude toward delayed reward (time preference) on the contract decision to lease or own a solar photovoltaic (PV) system. We develop a theoretical framework to show that the effect of risk and time preferences on the relative utilities from the two contracts is monotonic: Lower risk aversion and lower discount rate (more patience) imply a higher chance of solar PV ownership. To test these predictions empirically, we first estimate preference parameters (risk aversion and discount rate) from laboratory data collected from solar PV adopters. We then combine the parameter estimates with data on actual solar PV contract choice to examine the relationship between solar PV adopters' time and risk preferences and their lease‐versus‐own choice. Our regression results confirm that less risk averse individuals have a higher tendency to choose the ownership option, whereas more patient individuals are (weakly) more likely to own their solar PV systems. These findings contribute to a greater understanding of the role of behavioral factors in household decisions related to energy technologies.more » « less
-
Most buildings still rely on fossil energy --- such as oil, coal and natural gas --- for heating. This is because they are readily available and have higher heat value than their cleaner counterparts. However, these primary sources of energy are also high pollutants. As the grid moves towards eliminating CO 2 emission, replacing these sources of energy with cleaner alternatives is imperative. Electric heat pumps --- an alternative and cleaner heating technology --- have been proposed as a viable replacement. In this paper, we conduct a data-driven optimization study to analyze the potential of reducing carbon emission by replacing gas-based heating with electric heat pumps 1 . We do so while enforcing equity in such transition. We begin by conducting an in-depth analysis into the energy patterns and demographic profiles of buildings. Our analysis reveals a huge disparity between lower and higher income households. We show that the energy usage intensity for lower income homes is 24% higher than higher income homes. Next, we analyze the potential for carbon emission reduction by transitioning gas-based heating systems to electric heat pumps for an entire city. We then propose equity-aware transition strategies for selecting a subset of customers for heat pump-based retrofits which embed various equity metrics and balances the need to maximize carbon reduction with ensuring equitable outcomes for households. We evaluate their effect on CO 2 emission reduction, showing that such equity-aware carbon emission reduction strategies achieve significant emission reduction while also reducing the disparity in the value of selected homes by 5X compared to a carbon-first approach.more » « less
An official website of the United States government
